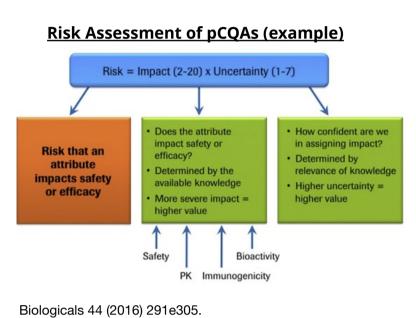
Peptide Mapping for mAb Characterization

Introduction to mAB Peptide Mapping

LC-MS/MS Conditions

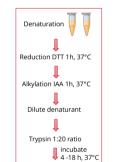

Immune system IgG-like protein that recognizes specific targets (antigens). Contains ~ 1320 amino acids in 4

- polypeptide chains:
- Two identical heavy chains (long chains)
- Two identical light chains (short chains)

Critical Quality Attributes

Critical Quality Attribute: "physical, chemical, biological or microbiological property or characteristics that should be within an appropriate limit, range, or distribution to ensure the desired product quality." ICH guidance Q8(R2)

Attribute Category What can be measured? MW Sequence variants Charge distribution Product- specific variants PTMs (oxidation, deamidation/isomerization, N/C-terminal processing, glycosylations) Aggregation (higher order structure variants) Host cell proteins Process-related impurities Raw materials (cell culture media, buffers, protein A) Leachables from product contact materials Excipients Concentration Obligatory (drug product Osmolality Adventitious agents (viruses, mycoplasma, endotoxins).


http://dx.doi.org/10.1016/j.biologicals.2016.06.005

Light Chain (25 kDa)

MW ~ 150 kDa

Sample Prep Steps

Protein Digestion Steps

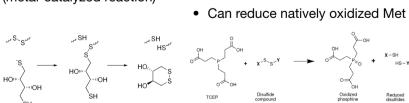
- Protein Denaturation Proteins can be denatured using high temperatures or by addition of chaotropic agents such as urea, guanidinium hydrochloride, and acetonitrile.
- Reduction of disulfide bonds Dithiothreitol (DTT) reduces the disulfide bonds between cysteine residues, allowing the protein to become fully unfolded.
- Alkylation An alkylating agent such as iodoacetic acid (IAA) is added to alkylate all of the cysteine residues, preventing
- Dilution Salts and other reagents that may denature the enzyme must be removed or diluted to ensure successful diges-
- **Digestion** Enzyme is added to the protein solution.

separations and does not contaminate LC/MS instrumentation

Denaturants

Denaturants				
Denaturation	Limitations			
8 M Urea	Heat breaks urea down to cyanate which can carbamylate lysine and arginine residues			
	Needs dilution to <2M urea for trypsin activity			
6M GnHCl	Lower trypsin digestion efficiency, even at 0.9 M concentration.			
	Needs extensive dilution or buffer exchange			
SDS	Not MS compatible (ion suppressing)			
	Must be removed prior to MS			
	Acid-labile surfactants (PPS Silent® Surfactant, Rapigest™, ProteaseMax)			
MS-friendly surfactants	Surfactants yielding insoluble precipitates under low pH (e.g., DOC)			
	Invitrosol™ does not interfere with your chromatography			

Removal of Denaturant


Cleanup type	Strengths	Weaknesses	
Dialysis	Minimal sample loss	Long clean up times	
Desalting column	Rapid desalting/Cleanup	Final sample concentra- tion lower	
Molecular weight cut-off filters (MWCO) FASP	Integrated protein	Susceptible to sample	
In-Stage Tip	digestion, denaturant and detergent removal. Can be easily automated	loss Final sample concentration higher	
SP3			

Reducing reagents

Dithiothreitol (DTT)

Needs pH values above 7 Can promote Met oxidation

 Odorless and more resistant to (metal-catalyzed reaction)

Beta-mercaptoethanol (BME)

Alkylating Reagents Tris(2-carboxyethyl)phosphine

Iodoacetic acid (IAA):

Slower reacting

- Carboxymethyl (+58 Da) is added to reduced cysteines
- Most common (fastest reacting),

FASP - Filter-aided sample preparation

• Carbamidomethyl (+57 Da) added to reduced cysteines Quenching with DTT can help with

SP3 - Single-Pot Solid-Phase-enhanced Sample Preparation

non-specific alkylation of other amino acids

- Chloroacetamide:
- Less reactive and more stable in solution than iodoacetamide Less non-specific alkylation of other amino acids and side reactions

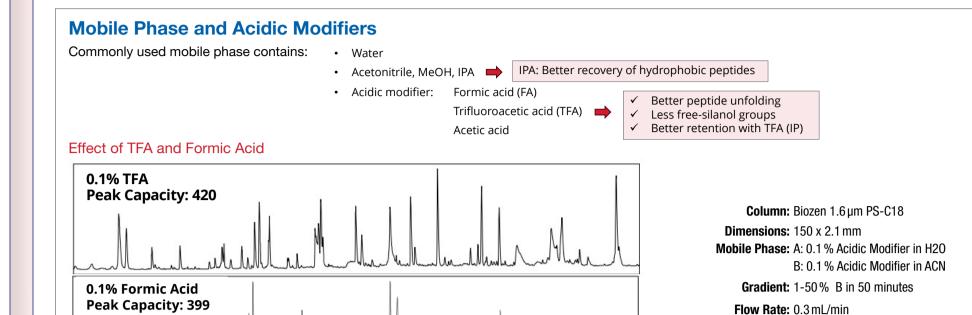
Optimal pH 8–9. Generally buffered with Tris or ammonium

Light sensitive reagents

• Serine protease considered the gold standard for protein digestion.

- Potential missed cleavages when K and R are followed at N-term by D/Q and C-term by P.

Tolerates: 0.1 % SDS, 1 M urea, and 10 % acetonitrile.


- Well-defined specificity for C-terminal K and R.

N - ala - ser - pro - lys + gly -gly - arg + trp - asp - glu - lys + cys - C N - asp - lys - glu - lys - glu - arg - trp - gly - arg - pro - cys - C

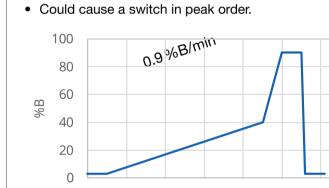
Column: Biozen 2.6 µm XB-C18 Dimensions: 150 x 2.1 mm **Part No.:** 00F-4768-AN Mobile Phase: A: 0.1 % Formic Acid in H20 B: 0.1 % Formic Acid in ACN

Gradient: 1-50 % B in 50 minutes Flow Rate: 0.3 mL/min **Temperature:** 40 °C **Sample:** Trastuzumab

Selectivity Drivers

Comprehensive Evaluation of Reversed-Phase Columns for Peptide Mapping

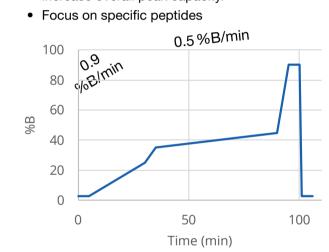
Gain insights from a detailed comparison of 13 reversed-phase columns tested with complex peptide mixtures.


The study assesses performance across acidic, basic, and long-chain peptides, revealing how column chemistry and hardware influence mapping quality. Findings support data-driven column selection for improved resolution, efficiency, and reproducibility in biopharma applications.

Review the study to strengthen your peptide mapping strategy.

Type of Gradients

Shallow gradients:


- Slope 0.5 1 %B/min Provide the best separation.

0 10 20 30 40

Time (min)

Quickly skip time windows where peptides don't elute and increase overall peak capacity. Focus on specific peptides

Temperature: 40 °C

Detection: UV @ 214 nm

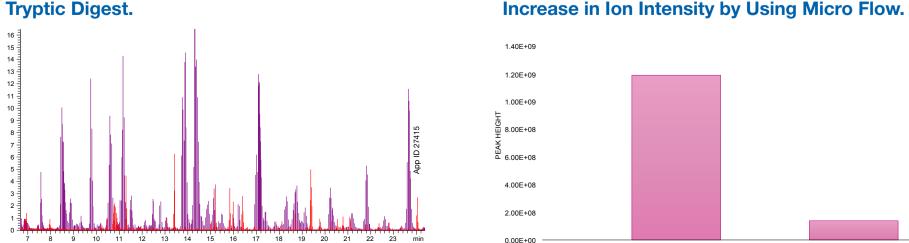
Sample: Tryptic Digest, NIST mAb

Peak Capacity

513

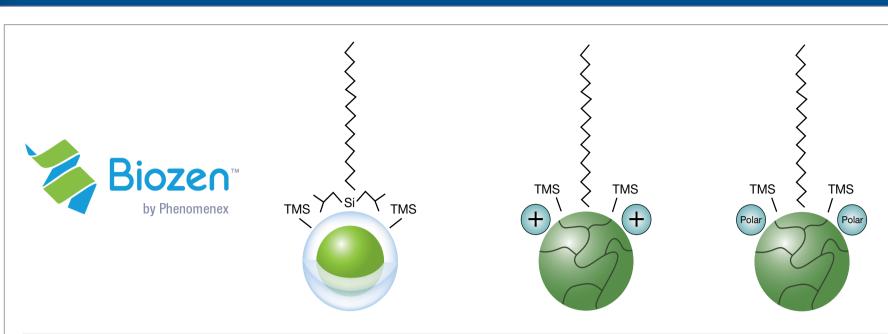
343

- ✓ Increase in efficiency with temperature. More significant for fully porous particles e.g. bioZen peptide PS-C18
- ✓ Higher temperatures improve peak shape of peptides from proline-rich proteins (cis-trans isomerization rate)
- On-column thermal peptide cleavage in presence of 0.1 % formic acid (Asp-X and X-Asp)
- Son-column thermal promotion of artificial modifications: oxidation of Met, Pyro-Glu (N-term Q/E) deamidation of Asn to Asp, and isomerization of Asp.

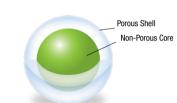

Column: Biozen 1.6 µm Peptide PS-C18 **Dimensions:** 150 x 2.1 mm Mobile Phase: A: 0.1 % Formic Acid in Water B: 0.1 % Formic Acid in Acetonitrile **Gradient:** 1-50 % B in 50 minutes Flow Rate: 0.3 mL/min Temperature: 40 °C **Detection: Q-TOF** Sample: Trastuzumab Digest, 1 µg

Effect of Column Dimensions What can we modify? • Column Length • Column ID Column Length effect: Efficiency is proportional to column length. • Longer columns provide higher resolution, but longer run times

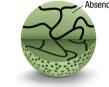
• Very complex samples could warrant the use of a longer column (250 mm) In general, ID of 2.1 mm are the common choice for LC-MS/MS


• For tryptic peptides pore sizes of ~100 Å is ideal. Larger pore sizes can be considered for larger peptides (middle-out/down approach).

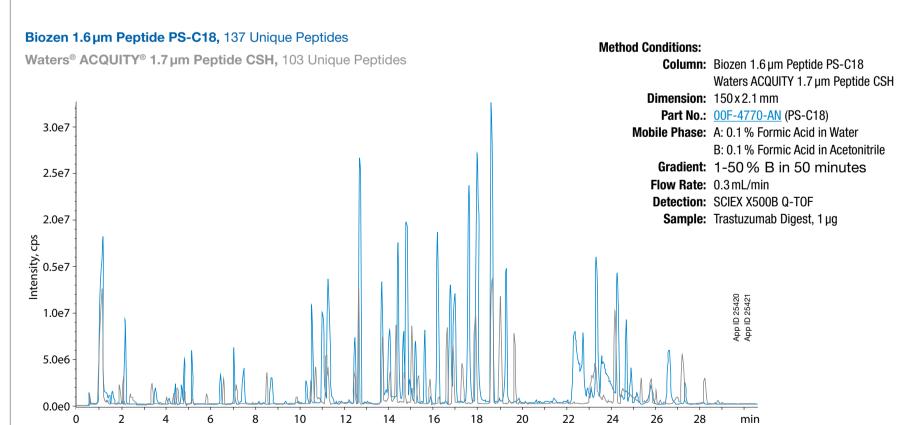
Overlap of TIC Traces for Analytical Flow (Red) and Micro Flow (Purple) of AAV9 Viral Proteins


Micro Flow

Selection of Stationary Phases


	Biozen Peptide XB-C18	Biozen Peptide PS-C18	Biozen Peptide Polar
Recommended Use	Overall retention of both acidic and basic peptides for both peptide mapping and peptide quantitation applications	Excellent retention of peptides for both peptide mapping and peptide quantitation applications	Enhanced selectivity and retention for polar peptides without diminishing non-polar retention mechanism.
Particle Size (µm)	1.7, 2.6, 5	1.6, 3	1.6, 3
Pore Size (Å)	100	100	100
Surface Area (m²/g)	200	260	260
Carbon Load	10	9	9
pH Stability	1.5-9	1.5-8.5	1.5-8.5

Core-Shell Technology


Using sol-gel nano-structuring, a durable and uniform porous shell is formed over a solid silica core. Combined with advanced packing technology, this process delivers highly reproducible columns with excellent efficiency and

Thermally Modified Fully Porous

Through a proprietary series of thermal processing steps, we eliminate micropores and further improve consistency, leading to higher column efficiency and reproducibility.

Biozen provides improved sequence coverage and sensitivty compared to equivalent alternatives

Comprehensive Evaluation of Reversed-Phase Columns for Peptide Mapping

• Compare 13 reversed-phase columns with complex peptide mixtures.

• See performance across acidic, basic, and long-chain peptides.

Comparative separations may not be representative of all applications.

- Discover how column chemistry and hardware shape mapping quality.
- Choose columns confidently for better resolution, efficiency, and reproducibility in biopharma

Review the study to strengthen your peptide mapping strategy.

Biozen is a trademark of Phenomenex. ACQUITY is a trademark of Waters Corporation. Comparative separations many not be representative of all applications. Phenomenex is in no way affiliated with Waters Corporation. FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures. © 2024 Phenomenex, Inc. All rights reserved.