

# **APPLICATIONS**

# Maximizing Analyte Recovery using the Phenomenex Phree<sup>™</sup> Phospholipid Removal Plate with an Established LC-MS/MS Method using Kinetex<sup>®</sup> Core-Shell C18 HPLC/UHPLC Columns to Quantify 25-OH Vitamin D<sub>2</sub> and D<sub>3</sub>

Pruden R¹, Dutton JJ¹, Evans L¹, Davison AS¹, Rudge J², Turner J²
Department of Clinical Biochemistry & Metabolic Medicine, Royal Liverpool & Broadgreen University Hospital Trust, Liverpool, UK¹
Phenomenex, Melville House, Macclesfield, Cheshire, SK10 2BN, UK²

This technical note presents preliminary data showing that simultaneously removing proteins and phospholipids from plasma samples with a Phenomenex Phree phospholipid removal plate showed a superior sample clean-up compared to a standard protein precipitation method. Quantification of 25-OH vitamin D and detection of LLOQ calibrators (5 nmol/L) was easier compared to samples where protein precipitation alone had been performed. This work was performed by the Royal Liverpool & Broadgreen University Hospital and was presented at the British Mass Spectrometry Society (BMSS) 2014 Annual Meeting.

### Introduction

Recently laboratories have been increasingly employing the use of LC-MS/MS for the analysis of vitamin D. Recent studies have shown that data from LC-MS/MS is more accurate and shows a greater level of specificity than by immunoassay². Given the levels of sensitivity required to accurately quantify 25-OH vitamin  $\rm D_3$ , LC-MS/MS is the only practical alternative.

A degree of sample preparation is required for the analysis of 25-OH vitamin D<sub>3</sub>, otherwise there is a risk of blockage and contamination of HPLC columns and LC-MS/MS equipment. At minimum it is necessary to perform protein precipitation or a combination of protein precipitation and Solid Phase Extraction (SPE). Protein precipitation alone is less expensive and quicker; however, samples are not as clean as when using SPE. This makes quantitation at the LLOQ (5 nmol/L) or for severely deficient samples (< 15 nmol/L) a real challenge. Phospholipids are a major contributor to sample contamination, and it has been reported that they can suppress analyte signals and contaminate columns and systems<sup>4</sup>.

Please note that the data shown in this technical note is for 25-OH vitamin  $\rm D_3$  however it should be noted 25-OH vitamin  $\rm D_2$  also behaved in the same way.

### Method

### Existing protein precipitation method:

Serum was precipitated using Zinc sulfate (ZnSO<sub>4)</sub> and Acetonitrile (ACN) containing trideuterated 25-OH vitamin D<sub>2</sub> and D<sub>3</sub> internal standards. Analysed by reversed phase chromatography using a Phenomenex Kinetex core-shell 2.6 µm C18 100 Å 50 x 3 mm HPLC/UHPLC column on an ACQUITY® UPLC® separation module coupled to a Xevo™ TQS mass spectrometer (Waters Corp.). Details of the protein precipitation are as follows:

1. Thoroughly mix all samples before use.

- Place 100 µL of calibration standards/QC/samples into each well.
- 3. Add 100 µL of zinc sulphate into each well.
- Add 200 µL of working internal standard into all wells. Heat seal the plate with a plastic sheet, then place the plate on the plate shaker for 1 hr at 900 rpm.
- Centrifuge plate for 15 minutes at 4500 rpm.
- Place the plate into the sample manager or store at 4 °C for up to 5 days.

# New sample preparation method employing a Phree phospholipid removal plate:

Serum was precipitated using ACN/Methanol (85:15) containing trideuterated 25-OH vitamin  $\rm D_2$  and  $\rm D_3$  internal standards. Sample precipitation, followed by vacuum filtration, was conducted on the Phree plate into a collection plate. A further aliquot of ACN wash was passed through the plate. The filtrate was analyzed by reversed phase chromatography using a Phenomenex Kinetex core-shell 2.6  $\mu m$  C18 100 Å 50 x 3 mm HPLC/UHPLC column on an ACQUITY UPLC separation module coupled to a Xevo TQS mass spectrometer (Waters® Corp.). Details of the Phree protocol are:

- 1. Add 400 µL ACN with 0.1% Formic acid and internal standard to each well of the Phree plate.
- Add 100 µL of sample directly into the ACN with 0.1 % Formic acid. Heat seal any wells that are unused.
- Vortex for 10 minutes at maximum speed taking care not to spill solvent.
- Apply vacuum for 1-2 minutes and collect filtrate in a 96-well collection plate. The Phree sorbent selectively removes phospholipids from precipitated plasma while precipitated proteins are filtered out by the frit.
- Add 500 µL of ACN with 0.1 % Formic acid to each well and vortex for 2 minutes at the maximum possible speed again taking care not to spill solvent.
- Apply vacuum for 1-2 minutes and collect the filtrate into the same collection plate used in step 4, pooling the two fractions together.
- 7. Drydown to completeness under a gentle stream of N<sub>2</sub>.

continued



Reconstitute in 500 µL ACN with 0.1 % Formic 8. acid/0.1 mM Zinc sulfate (50:50).

### LC/MS/MS Method

Column: Kinetex® 2.6 µm C18 Dimensions: 50 x 3.0 mm Part No.: 00B-4462-Y0

Mobile Phase: A: 0.1541 g Ammonium acetate/1 mL Formic acid in 1 L of Deionized Water

B: 0.1541 g Ammonium acetate/1 mL Formic acid in 1 L of Methanol

Flow Rate: 0.6 mL/min Gradient: Time (min) % B 0.0 82.5 1.8 82.5 2.0 3.5 99.5 99.5 4.0 82.5

**Detection:** MS/MS (Waters Corp. Xevo™ TQS)

### **Samples Used**

96+ samples including: 4 calibrators, 5 QCs (3 UTAK and 2 Chromsystems (CS)) and the remainder - samples ranging from low (<15 nmol/L) to high (>180 nmol/L) concentrations.

### Reference Range<sup>5</sup>

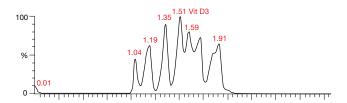
≤15 nmol/L - indicative of severe vitamin D deficiency

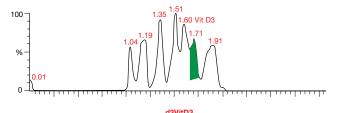
>15 nmol/L and ≤ 30 nmol/L – indicative of vitamin D deficiency

>30 nmol/L and  $\leq$  50 nmol/L – indicative of vitamin D insufficiency

>50 nmol/L - indicates adequate vitamin D status

>70 nmol/L - indicates optimal vitamin D status


>125 nmol/L - may indicate vitamin D toxicity


### **Results**

| Туре       | ID    | Manuf. Conc.<br>(nmol/L) | QC Range (nmol/L) Original Protein Precipitaiton Method (nmol/L) |       | Phree <sup>™</sup><br>Method<br>(nmol/L) |
|------------|-------|--------------------------|------------------------------------------------------------------|-------|------------------------------------------|
| Calibrator | Cal 0 | 2.8                      |                                                                  | N/A*  | 2.6                                      |
| Calibrator | Cal 1 | 24                       |                                                                  | 23.9  | 25.4                                     |
| Calibrator | Cal 2 | 68.4                     |                                                                  | 68.7  | 71.1                                     |
| Calibrator | Cal 3 | 183                      |                                                                  | 182.8 | 179.1                                    |
| QC         | UTAK1 | 25.3                     | 21-29                                                            | 28.2  | 25.6                                     |
| QC         | UTAK2 | 65.3                     | 62-83                                                            | 68.5  | 65.2                                     |
| QC         | UTAK3 | 193.1                    | 155-210                                                          | 193.2 | 179.4                                    |
| QC         | CS1   | 38.5                     | 29.9-44.8                                                        | 37.2  | 43                                       |
| QC         | CS2   | 139.7                    | 107-160 122.3                                                    |       | 126.7                                    |

<sup>\*</sup> Value not obtained due to sample matrix interferences

Figure 2. Extracted Calibrator 0 Chromatograms Protein Precipitation





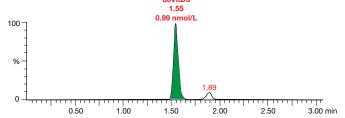





Figure 2. (cont.) Extracted Calibrator 0 Chromatograms Phree<sup>™</sup> Phospholipid Removal

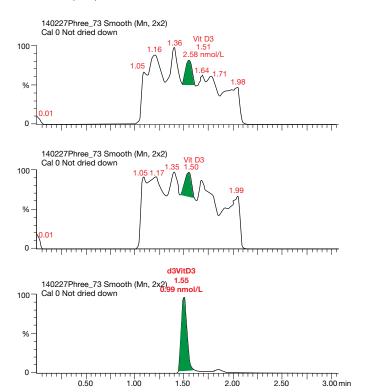
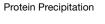
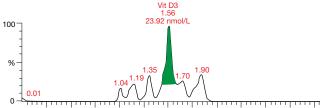
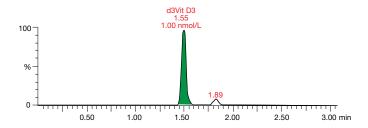





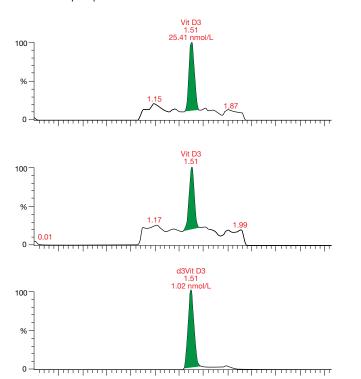

Figure 3. Extracted Calibrator 1 Chromatograms







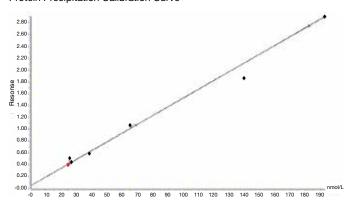





**Figure 3.** (cont.) Extracted Calibrator 1 Chromatograms

Phree<sup>™</sup> Phospholipid Removal

0.50


1.00



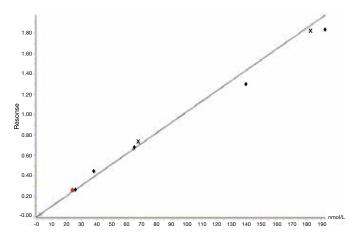
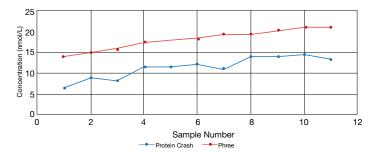
1.50

2.50

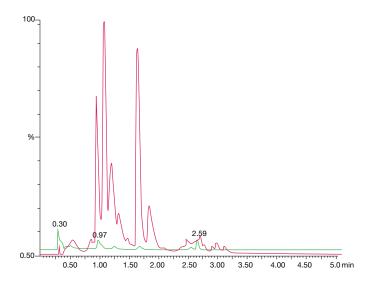
**Figure 4.**Protein Precipitation Calibration Curve



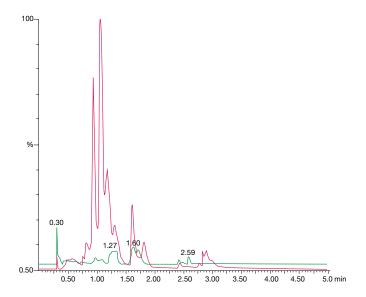
**Figure 5.** Phree<sup>™</sup> Phospholipid Removal Calibration Curve





Figure 6. Comparison of Phree™ Phospholipid Removal and Protein Precipitation Concentrations over a Range of Deficient Samples




**Figure 7**. Comparison of Phree Phospholipid Removal and Protein Precipitation Concentrations over a Large Range of Samples



**Figure 8.**Phospholipid Profile Overlays (m/z 184/184)
Cal 0 - Phospholipid profile



Sample - Phospholipid profile





### **Discussion**

When looking at the calibration results presented in Figure 1 it is evident that both the protein precipitation and Phree™ phospholipid removal methods gave very similar numbers to one another in terms of concentrations. Both were also within the manufacturer's acceptable concentration range. Importantly it was observed that due to matrix interferences, the 'Cal 0' calibrator was not detected after the original protein precipitation method. The extracted calibrator 0 chromatograms were further examined (Figure 2), the vitamin D<sub>a</sub> peak was not detected at 1.55 minutes (retention time of internal standard) using the protein precipitation method, although there were peaks on either side (1.51 and 1.60) which may have been the vitamin, however this is unlikely as normally the vitamin has the same retention time (RT) as its internal standard (IS). A vitamin D<sub>a</sub> peak was clearly visible at the retention time of the IS (1.51) using the Phree phospholipid removal method. Both the vitamin and its IS were at slightly shorter retention times compared to the original method. This was a result of the strength of the diluent. To confirm, a test was carried out to dilute the sample with water prior to injection and indeed this did increase the RT of the sample and IS.

**Figure 3** shows the extracted 'Cal 1' results for ~25 nmol/L standards. The 25-OH vitamin  $D_3$  peak at 1.55 minutes was detected at this level using the protein precipitation method, however there appeared to be variable ion suppression. This gives a positive bias to the peak area and affects quantitation. The peak resulting from the Phree extraction was clear of any visible ion suppression interferences and generally there were less peaks around the main peak. This led to a more accurate quantitation of the peak.

Comparing the calibration curves obtained by the protein precipitation method (**Figure 4**) and the Phree method (**Figure 5**) it can clearly be seen that there is a positive bias shown on the protein precipitation calibration curve. A lack of a Cal 0 value and a positive-biased Cal 1 area would have contributed to this. Due to the cleaner sample resulting from the Phree extraction protocol, no positive or negative intercept was observed. This is backed up by the values observed when the calibration curve was generated. Critically, the LLOQ calibrator was detected and closely matched the quoted concentration (**Figure 1**).

As a result of the cleaner extracts and more accurate calibration curve, quantitation of the vitamin from deficient samples showed higher values from the Phree extraction (**Figure 6**). This can also be seen in **Figure 7**, where for a full range of samples, the Phree method gave higher concentration values. Due to the wide acceptance range that the QC samples allow (**Figure 1**), it is difficult to

say for certain which set of samples is more accurate. However, it can be assumed that samples which show a cleaner extract and calibrate with no bias probably have a greater chance of accuracy.

Finally the Phree extracts gave a 5-7 fold reduction in identified phospholipids both in the plasma samples and Cal 0 extracts (**Figure 8**). This reduction in phospholipids in the Phree extract would have reduced the amount of background 'noise' on the chromatograms allowing for better peak identification and quantitation. Moreover, it is known that phospholipids can cause analyte signal-suppression and in some circumstances can cause enhancement which can affect analyte quantitation<sup>4</sup>. In addition, fewer phospholipids will reduce contamination of HPLC columns and MS sources allowing for longer intervals between cleaning and hence reducing system downtime.

### **Conclusions**

- Relative areas and thus concentrations of the plasma samples are universally higher from a Phree phospholipid removal extract.
- Detection and quantification down to the LLOQ was achieved using the Phree protocol, unlike the protein precipitation.
- Several sample were able to reach more accurate levels of detection due to the Phree protocol rather than the protein precipitation.
- With a 5-7 fold reduction in phospholipid detected by the Phree method, columns and systems were both less contaminated.

### References

- Bilinski K, Boyages S., Evidence of overtesting for vitamin D in Australia: an analysis of 4.5 years of Medicare Benefits Schedule (MBS) data. BMJ Open (2013);3:e002955. doi:10.1136/bmjopen-2013-002955.
- 2. Carter G. D., Clinical Chemistry (2012) 58(3) 486-488.
- 3. Chromatography Today Helpdesk, Chromatography Today (2013) 6(4): 16-19.
- 4. Vitamin D and Bone Health: A Practical Clinical Guideline for Patient Management, National Osteoporosis Society
- Maximising analyte recovery using the Phenomenex Phree SPE plate with an established LC-MS/MS method to quantify 25-OH Vitamin D2 and D3. Pruden, R., Dutton, J.J., Evans, L. Rudge, J. Clin Chem Lab Med 2014; 52(11):eA318-319.

AH0-8950



### **Ordering Infomation**

### Phree<sup>™</sup> Phospholipid Removal Products

| 111100 1            | nospholipia riciniovai i roduots                       |         |
|---------------------|--------------------------------------------------------|---------|
| Part No.            | Description                                            | Unit    |
| 8B-S133-TAK         | Phree Phospholipid Removal 1 mL Tube                   | 100/box |
| 8E-S133-TGB         | Phree Phospholipid Removal 96-Well Plates              | 2/box   |
| Accessories         |                                                        |         |
| Collection Pla      | ites (deep well, polypropylene)                        |         |
| AH0-7192            | 96-Well Collection Plate 350 µL/well                   | 50/pk   |
| AH0-7193            | 96-Well Collection Plate 1 mL/well                     | 50/pk   |
| AH0-7194            | 96-Well Collection Plate 2 mL/well                     | 50/pk   |
| AH0-8635            | 96-Well Collection Plate, 2 mL Square/Round-Conical    | 50/pk   |
| AH0-8636            | 96-Well Collection Plate, 2 mL Round/Round, 8 mm       | 50/pk   |
| AH0-7279            | 96-Well Collection Plate, 1 mL/well Round, 7 mm        | 50/pk   |
| <b>Sealing Mats</b> |                                                        |         |
| AH0-8597            | Sealing Mats, Pierceable, 96-Square Well, Silicone     | 50/pk   |
| AH0-8598            | Sealing Mats, Pre-Slit, 96-Square Well, Silicone       | 50/pk   |
| AH0-8631            | Sealing Mats, Pierceable, 96-Round Well 7 mm, Silicone | 50/pk   |
| AH0-8632            | Sealing Mats, Pre-Slit, 96-Round Well 7 mm, Silicone   | 50/pk   |
| AH0-8633            | Sealing Mats, Pierceable, 96-Round Well 8 mm, Silicone | 50/pk   |
| AH0-8634            | Sealing Mats, Pre-Slit, 96-Round Well 8 mm, Silicone   | 50/pk   |
| AH0-7362            | Sealing Tape Pad                                       | 10/pk   |
| Vacuum Man          | ifolds                                                 |         |
| AH0-6023*           | SPE 12-Position Vacuum Manifold Set, for tubes         | ea      |
| AH0-6024*           | SPE 24-Position Vacuum Manifold Set, for tubes         | ea      |

<sup>\*</sup>Manifolds include: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lid with gasket, male and female luers and yellow end plugs, stopcock valves, collection rack assemblies, polypropylene needles, lid support legs. Waste container included with 12-positive

96-Well Plate Manifold, Universal with Vacuum Gauge

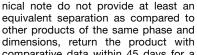
### Kinetex® Core-Shell HPLC/UHPLC Columns

| 5 µm Analy | SecurityGuard<br>ULTRA Cartridges <sup>‡</sup> |             |             |             |               |
|------------|------------------------------------------------|-------------|-------------|-------------|---------------|
| Phases     | 50 x 4.6                                       | 100 x 4.6   | 150 x 4.6   | 250 x 4.6   | 3/pk          |
| C18        | 00B-4601-E0                                    | 00D-4601-E0 | 00F-4601-E0 | 00G-4601-E0 | AJ0-8768      |
|            |                                                |             |             |             | for 4.6 mm ID |

| 5 µm MidB | ore™ Columns (mn | 1)          | SecurityGuard<br>ULTRA Cartridges‡ |
|-----------|------------------|-------------|------------------------------------|
| Phases    | 50 x 3.0         | 100 x 3.0   | 3/pk                               |
| C18       | 00B-4608-Y0      | 00D-4608-Y0 | AJ0-8777                           |
|           |                  |             | for 4.6 mm ID                      |

| 5 µm Minit | oore Columns (mm | )           | 101 4.0111111 | ID          | ULTRA Cartridges <sup>‡</sup> |
|------------|------------------|-------------|---------------|-------------|-------------------------------|
| Phases     | 30 x 2.1         | 50 x 2.1    | 100 x 2.1     | 150 x 2.1   | 3/pk                          |
| C18        | 00A-4601-AN      | 00B-4601-AN | 00D-4601-AN   | 00F-4601-AN | AJ0-8782                      |

| J HIII MIIIIDO | ne ooiuiiiis (iiiiii | 1               |             |                                    | OLITIA Varutuges                             |
|----------------|----------------------|-----------------|-------------|------------------------------------|----------------------------------------------|
| Phases         | 30 x 2.1             | 50 x 2.1        | 100 x 2.1   | 150 x 2.1                          | 3/pk                                         |
| C18            | 00A-4601-AN          | 00B-4601-AN     | 00D-4601-AN | 00F-4601-AN                        | AJ0-8782                                     |
|                |                      |                 |             |                                    | for 2.1 mm ID                                |
|                | Phases               | Phases 30 x 2.1 |             | Phases 30 x 2.1 50 x 2.1 100 x 2.1 | Phases 30 x 2.1 50 x 2.1 100 x 2.1 150 x 2.1 |


| C18        | 00A-4601-AN                  | 00B-4601-AN | 00D-4601-AN 00               |             | AJ0-8782    |                               |  |
|------------|------------------------------|-------------|------------------------------|-------------|-------------|-------------------------------|--|
|            |                              |             |                              | fo          | r 2.1 mm ID | SecurityGuard                 |  |
| 2.6 µm An  | alytical Columns (r          | mm)         |                              |             |             | ULTRA Cartridges‡             |  |
| Phases     | 30 x 4.6                     | 50 x 4.6    | 75 x 4.6                     | 100 x 4.6   | 150 x 4.6   | 3/pk                          |  |
| C18        | 00A-4462-E0                  | 00B-4462-E0 | 00C-4462-E0                  | 00D-4462-E0 | 00F-4462-E0 | AJ0-8768                      |  |
|            |                              |             |                              |             |             | for 4.6 mm ID                 |  |
|            |                              |             |                              |             |             | SecurityGuard                 |  |
| 2.6 µm Mic | dBore™ Columns (r            | nm)         |                              |             |             | ULTRA Cartridges <sup>‡</sup> |  |
| Phases     | 30 x 3.0                     | 50 x 3.0    | 75 x 3.0                     | 100 x 3.0   | 150 x 3.0   | 3/pk                          |  |
| C18        | 00A-4462-Y0                  | 00B-4462-Y0 | 00C-4462-Y0                  | 00D-4462-Y0 | 00F-4462-Y0 | AJ0-8775                      |  |
|            |                              |             |                              |             |             | for 3.0 mm ID                 |  |
| 2.6 µm Mir | 2.6 μm Minibore Columns (mm) |             |                              |             |             |                               |  |
| Phases     | 30 x 2.1                     | 50 x 2.1    | 75 x 2.1                     | 100 x 2.1   | 150 x 2.1   | 3/pk                          |  |
| C18        | 00A-4462-AN                  | 00B-4462-AN | 00C-4462-AN                  | 00D-4462-AN | 00F-4462-AN | AJ0-8782                      |  |
| 1.7 um Mic | dBore Columns (m             | m)          | SecurityGua<br>ULTRA Cartrid |             |             | for 2.1 mm ID                 |  |

| 2.6 µm Mir | nibore Columns (mr | n)          |                                  |             |                                                | ULTRA Cartridges <sup>‡</sup> |
|------------|--------------------|-------------|----------------------------------|-------------|------------------------------------------------|-------------------------------|
| Phases     | 30 x 2.1           | 50 x 2.1    | 75 x 2.1                         | 100 x 2.1   | 150 x 2.1                                      | 3/pk                          |
| C18        | 00A-4462-AN        | 00B-4462-AN | 00C-4462-AN                      | 00D-4462-AN | 00F-4462-AN                                    | AJ0-8782                      |
| 1.7 µm Mic | lBore Columns (mn  | 1)          | SecurityGuard<br>ULTRA Cartridge |             |                                                | for 2.1 mm ID                 |
| Phases     | 50 x 3.0           | 100 x 3.0   | 3/pk                             |             |                                                |                               |
| C18        | 00B-4475-Y0        | 00D-4475-Y0 | AJ0-8775                         |             |                                                |                               |
| 1.7 µm Mir | nibore Columns (mr | n)          | for 3.0 mm ID                    |             | SecurityGuard<br>ULTRA Cartridges <sup>‡</sup> |                               |
| Phases     | 30 x 2.1           | 50 x 2.1    | 100 x 2.1                        | 150 x 2.1   | 3/pk                                           |                               |
| C18        | 00A-4475-AN        | 00B-4475-AN | 00D-4475-AN                      | 00F-4475-AN | AJ0-8782                                       |                               |

for 2.1 mm ID

\*SecurityGuard ULTRA cartridges require holder, Part No.: AJ0-9000

Having trouble reproducing this method? We would love to help!



If Phenomenex products in this tech-

equivalent separation as compared to other products of the same phase and dimensions, return the product with comparative data within 45 days for a FULL REFUND.



# phenomenex ...breaking with tradition<sup>™</sup>

# PLICATIONS

**Australia** t: +61 (0)2-9428-6444 auinfo@phenomenex.com

### Austria

t: +43 (0)1-319-1301 anfrage@phenomenex.com

### **Belaium**

t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch) beinfo@phenomenex.com

### Canada

t: +1 (800) 543-3681 info@phenomenex.com

**China** t: +86 400-606-8099 cninfo@phenomenex.com

**Denmark** t: +45 4824 8048 nordicinfo@phenomenex.com

### **Finland**

t: +358 (0)9 4789 0063 nordicinfo@phenomenex.com

### France

t: +33 (0)1 30 09 21 10 franceinfo@phenomenex.com

**Germany** t: +49 (0)6021-58830-0 anfrage@phenomenex.com

India t: +91 (0)40-3012 2400 indiainfo@phenomenex.com

t: +353 (0)1 247 5405 eireinfo@phenomenex.com

t: +39 051 6327511 italiainfo@phenomenex.com

**Luxembourg** t: +31 (0)30-2418700 nlinfo@phenomenex.com

### Mexico

t: 01-800-844-5226 tecnicomx@phenomenex.com

### The Netherlands

t: +31 (0)30-2418700 nlinfo@phenomenex.com

New Zealand t: +64 (0)9-4780951 nzinfo@phenomenex.com

**Norway** t: +47 810 02 005 nordicinfo@phenomenex.com

### Portugal

t: +351 221 450 488 ptinfo@phenomenex.com

### Singapore

t: +65 800-852-3944 sginfo@phenomenex.com

**Spain** t: +34 91-413-8613 espinfo@phenomenex.com

**Sweden** t: +46 (0)8 611 6950 nordicinfo@phenomenex.com

### Switzerland

t: +41 61 692 20 20 swissinfo@phenomenex.com

### **United Kingdom**

t: +44 (0)1625-501367 ukinfo@phenomenex.com

t: +1 (310) 212-0555 info@phenomenex.com



## info@phenomenex.com

### Terms and Conditions

Subject to Phenomenex Standard Terms and Conditions which may be viewed at www.phenomenex.com/TermsAndConditions.

Kinetex is a registered trademark and Phree, SecurityGuard, and MidBore are trademarks of Phenomenex Inc. ACQUITY and UPLC are registered trademarks and Xevo is a trademark of Waters Corporation.

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures.

© 2018 Phenomenex, Inc. All rights reserved.

### www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department at international@phenomenex.com