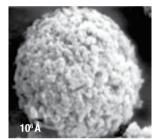
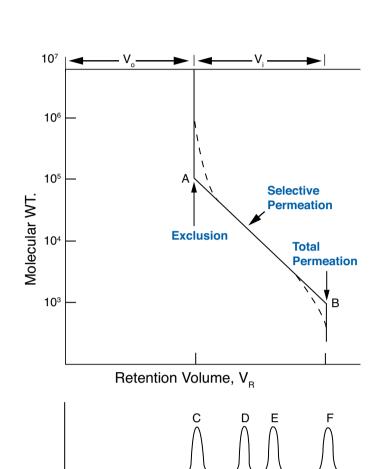

Introduction to GPC Method Development

Understanding GPC

In Gel Permeation Chromatography (GPC), molecules are separated based on their exclusion from the controlled pores in the packing material, which is usually determined by their molecular weight. GPC is operated with polymeric gel packing material with a non-aqueous mobile phase.


For an effective separation, the analytes should partially enter the pores of the packing material. If they are not able to enter the pores at all, they are completely excluded and elute first with V_0 as shown in peak C. The analytes that can fully enter the pores are totally permeated and will elute at the end of the chromatogram, as shown in peak F. All analytes that elute in between exclusion and total permeation are within the selective permeation where you can accurately qualify and quantify peaks.


SEM Photos of Phenogel Polymer Beads

Known compound M

Unknown compound M

Phenogel Column

50 Å

100 Å

500 Å

10³ Å

10⁴ Å 10⁵ Å

10⁶ Å

Linear (2)

- solvent

Benzen Carbor Chlorofo 30 % H Diethyl Dimethy Dimethy Dioxane DMSO Ethyl Ac Hexaflue Hexane M-Creso Methyl E Methyle 0-Chloro 0-Dichlo Quinolin Tetrahy

Toluene Trichloro Water Xylene

Maximum resolution Small Organics Fast fingerprint over broad MW range

Mixed-Bed (Linear)

544	✓		Resins	1 K – 75 K 5 K – 500 K 10 K – 1,000 K	
N	\checkmark	\checkmark			
/W	\checkmark		High MW Polymers	60 K – 10,000 K 100 – 10,000 K	

Fixed Pore

The key to selecting a GPC column is the molecular weight range of the compounds being separated.

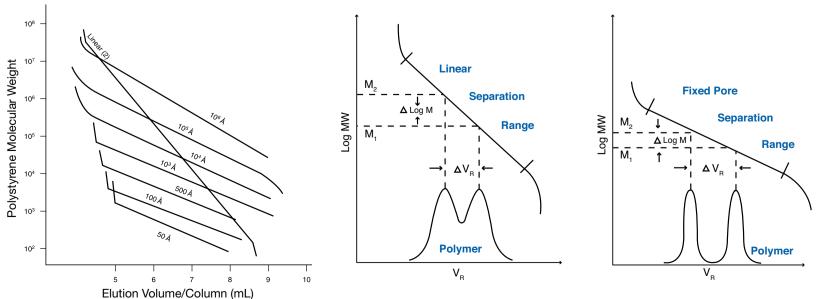
Then the second decision weighs speed versus resolution. The following tables give you some guidance.

Sample Type

Molecular Weight

100 – 3 K

500 – 6 K


1 K – 15 K

Effects of Coupling GPC Columns

Column Selection

Number of Analytical Columns	MW Range	Resolution	Run Time
1 Mixed-Bed Column	Broad	Moderate	Short
2 Mixed-Bed Columns	Broad	Good	Moderate
3 Mixed-Bed Columns	Broad	Better	Long
1 Fixed Pore Column	Narrow	Good	Short
2 Fixed Pore Columns (with different pore sizes)	Broad	Good	Moderate
3 Fixed Pore Columns (with different pore sizes)	Very Broad	Good	Long
2-3 Fixed Pore Columns (with same pore size)	Narrow	Better	Long

Calibration MW Curves of Different Phenogel Columns

ATTENTION

Never combine different mixed-bed (linear) columns. Never combine a mixed-bed column with a fixed pore column. When combining different fixed pore columns, ensure that their calibration curves have the same slope. Couple columns with either increasing pore size or decreasing pore size as long as the order is kept consistent.

Solvent Selection

The solvent selection needs to be determined by the following factors:

• The analyte needs to be soluble in the solvent

• The stationary phase needs to be compatible with this

• The solvent needs to ensure a secondary interaction-free, pure size exclusion separation

• To ensure that the viscosity of the mobile phase is not too high it is sometimes necessary to work at higher temperatures. In these cases ensure that the boiling point of the solvent is minimum 50 °C higher than the planned operating temperature

 Additives such as 0.1M Lithium Bromide are commonly used with polar solvents such as DMF, NMP, and DMAC to eliminate unwanted interactions with the analytes and mobile phase

Recommended GPC Solvent	Sample	Suggested Temp.
THF	Polystyrenes Polybutadienes Epoxy Resins Phenolic Resins Polymethyl Methacrylates Polyethylene Glycol	Ambient Ambient
HFIP**	Polyamides (Nylon) PET/PETP (polyethyleneterephthalate)	30°C
Dichloromethane	Naphthalene Diethylhexyl Phthalate	Ambient
Toluene	Polyisobutlylene Polyisoprene Silicone Oils	Ambient
DMF	Polyethylene Oxide Polyvinylpyrrolidone (PVP) Cellulose Acetate Hydroxyethylcellulose (HEC) Chlorinated Rubber	50 °C 40 °C

**HFIP (hexafluoroisopropanol) allows polymers such as polyamides and PET that are analyzed at a temperature of 135 °C and higher to be analyzed at temperatures below 100 °C. The narrow particle distribution of Phenogel columns eliminates the problem of overlapping peaks and brand broadening that is typically associated with using this solvent with traditional GPC columns.

Reduced Solvent Consumption

Phenogel-Narrow Bore Columns:

An Improved Dimension in GPC Analysis

 Decrease solvent consumption • Retain same elution profile

Reduce solvent disposal costs

Solvent Consumption

The Phenogel-NB columns have a 4.6 mm column ID and run at 0.35 mL/ min, reducing solvent consumption and disposal costs up to 65 %!

ATTENTION

With narrow bore GPC/SEC columns, the volume in which the sample elutes is significantly decreased, thus increasing the effective concentration of the sample. In GPC this leads to overloading effects and proportionally lower sample loadings must be used.

Solvent Compatibility Chart

	Phenogel Fixed Pore:						Linear	Suggested	
Iobile Phase Solvent	50 Å	100 Å	500 Å	10³ Å	10⁴ Å	10⁵ Å	10⁰ Å	& Mixed- Bed	Operating Temp.
e	Y	Y	Y	Y	Y	Y	Y	Y	
ne	Y	Y	Y	Y	Y	Y	Y	Y	
n Tetrachloride	Y	Y	Y	Y	Y	Y	Y	Y	
form	Y	Y	Y	Y	Y	Y	Y	Y	
IFIP/Chloroform	Y	Y	Y	Y	Y	Y	Y	Y	
Ether	Y	Y	Y	Y	Y	Y	Y	Y	
ylacetamide (DMAC)	Y*	Y	Y	Y	Y	Y	Y	Y	60°C
ylformamide (DMF)	Y*	Y	Y	Y	Y	Y	Y	Y	60 °C
e	Y	Y	Y	Y	Y	Y	Y	Y	
	Y*	Y	Y	Y	Y	Y	Y	Y	60 °C
cetate	Y	Y	Y	Y	Y	Y	Y	Y	
Joroisopropanol (HFIP)	Y	Y	Y	Y	Y	Y	Y	Y	
e	Y	Y	Y	Y	Y	Y	Y	Y	
sol	Y*	Y	Y	Y	Y	Y	Y	Y	100°C
Ethyl Ketone	Y	Y	Y	Y	Y	Y	Y	Y	
ene Chloride	Y	Y	Y	Y	Y	Y	Y	Y	
rophenol	Y*	Y	Y	Y	Y	Y	Y	Y	100°C
orobenzene	Y*	Y	Y	Y	Y	Y	Y	Y	135 °C
n	Y*	Y	Y	Y	Y	Y	Y	Y	60°C
rdrofuran	Y	Y	Y	Y	Y	Y	Y	Y	
e	Y	Y	Y	Y	Y	Y	Y	Y	
robenzene	Y*	Y	Y	Y	Y	Y	Y	Y	135 °C
	N	N	N	N	N	N	N	N	
	Y	Y	Y	Y	Y	Y	Y	Y	

*Not recommended on $5 \mu m 50 \text{ Å columns}$.

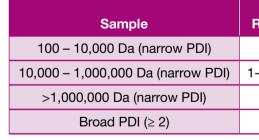
N = Not Compatible Y = Compatible

Solvent Switching Considerations

You can extend the column life of your GPC columns if you dedicate them to certain solvents. This will also minimize the number of necessary solvent switches. If care is not taken, a void may occur.

4 quick steps to ensure proper solvent switching:

- 1. Reduce flow rate to 0.2 mL/min (7.5 8 mm ID)
- 2. Keep backpressure < 1500 psi
- 3. Check for solvent miscibility on chart


Swell Class	Α	В	С	D		
Α	D	D	D	I		
В	D	D	I	D		
С	D	I	D	D		
D I D D D						
D I D D Direct Switches (D), Intermediate Step Required (I)						

Solvent Miscibility Table

Solvent	Polarity Index	Refractive Index @ 20 °C	UV(nm) Cutoff @ 1 AU	Boiling Point (°
Acetic Acid	6.2	1.372	230	118
Acetone	5.1	1.359	330	56
Acetonitrile	5.8	1.344	190	82
Benzene	2.7	1.501	280	80
n-Butanol	4.0	1.394	254	125
Butyl Acetate	3.9	1.399	215	118
Carbon Tetrachloride	1.6	1.466	263	77
Chloroform	4.1	1.446	245	61
Cyclohexane	0.2	1.426	200	81
1,2-Dichloroethane ¹	3.5	1.444	225	84
Dichloromethane ²	3.1	1.424	235	41
Dimethylformamide	6.4	1.431	268	155
Dimethyl Sulfoxide ³	7.2	1.478	268	189
Dioxane	4.8	1.422	215	101
Ethanol	5.2	1.360	210	78
Ethyl Acetate	4.4	1.372	260	77
Di-Ethyl Ether	2.8	1.353	220	35
Heptane	0.0	1.387	200	98
Hexane	0.0	1.375	200	69
Methanol	5.1	1.329	205	65
Methyl-t-Butyl Ether ⁴	2.5	1.369	210	55
Methyl Ethyl Ketone ⁵	4.7	1.379	329	80
Pentane	0.0	1.358	200	36
n-Propanol	4.0	1.384	210	97
Iso-Propanol ⁶	3.9	1.377	210	82
Di-Iso-Propyl Ether	2.2	1.368	220	68
Tetrahydrofuran	4.0	1.407	215	65
Toluene	2.4	1.496	285	111
Tichloroethylene	1.0	1.477	273	87
Water	9.0	1.333	200	100
Xylene	2.5	1.500	290	139

Immiscib Miscible Immiscible means that in some proportions two phases will be produced

Sample Concentration and Injection Volume

ATTENTION

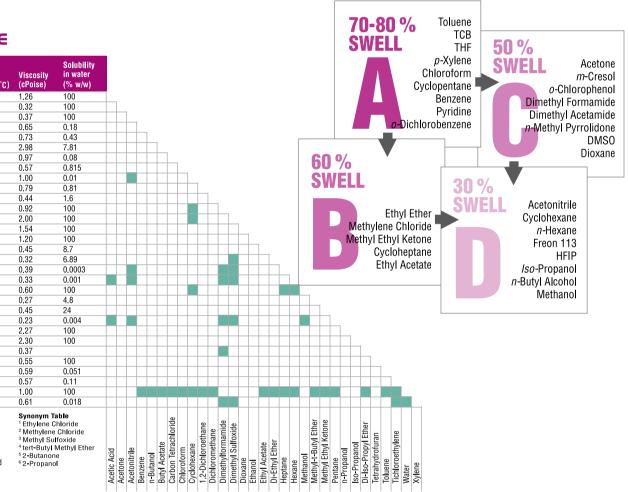
Please take into consideration that samples tend to have a greater viscosity as the molecular weight gets higher. Use lower concentrations of these samples to avoid degradation by sheering.



quarantee

f Phenogel analytical columns do not provide at least equivalent separation as compared to a competing column of the similar particle size, phase, and dimensions, send in your comparative data to a similar product with the Phenogel column within 45 davs for a FULL REFUND

Phenogel is a trademark of Phenomene 2014 Phenomenex, Inc. All rights reserve



4. Compare the swell characteristics of old and new solvent and use the following guidelines

ATTENTION

Make sure the old and new solvents are miscible with each other before proceeding with the solvent switch.

These recommendations are based on molecular weight and the polydispersity index (PDI) of the sample.

Recommended Concentration [mg/mL], (%)
2 (0.2 %)
-2 (0.1 – 0.2 %) (lower for higher molar masses)
0.5 (0.05 %) (lower for higher molar masses)
4-5 (0.4 – 0.5 %)

Number of Analytical Columns	Injection Volume [µL]		
≥ 4	200 – 250		
3	100		
2	50		
1	20		

www.phenomenex.com/understandingGPC