

## **APPLICATIONS**

# Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates using LC-MS/MS with a Synergi<sup>™</sup> Fusion-RP HPLC Column

Xianrong (Jenny) Wei, Laura Snow, and Ryan Splitstone Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA

### Introduction

The tricarboxylic acid (TCA) cycle is a critical metabolic pathway present in a majority of living organisms. In addition to its importance to normal life function, the TCA cycle has been the focus of additional research because of its implications in metabolomics for cancerous cells. For instance, several research groups have studied the metabolism of citrate between healthy and cancerous cells for diagnosis purposes and targeting of cancer therapies. Because of the importance of the TCA cycle, several methodologies have been proposed for the analytical monitoring of metabolites from a range of biological matrices.

Presently, many of the published methods for the analysis of TCAs utilizes either enzymatic, Nuclear Magnetic Resonance (NMR), or Liquid Chromatography-Mass Spectroscopy (LC-MS) as the analytical technique for the detection and quantification of the cycle's intermediates. However, there exists significant challenges to the detection and quantification of these metabolites within the aforementioned analytical techniques. For instance, enzymatic techniques often rely on indirect detection of the intermediates and therefore provides less direct information about TCAs. In the case of NMR, it does allow for direct monitoring, however it lacks the same sensitivity as LC-MS/MS and is generally a less available technique.

Therefore, presented in this technical note is a reference method for the simultaneous reversed phase analysis of TCA intermediates by LC-MS/MS with a focus on tricarboxylic acids (Citric, Isocitric, Malic, Succinic, Lactic, Glutamic and Fumaric acid) and a deuterated internal standard (Citric acid-D4) in a human biological matrix.

The analytical challenges were defined as adequate reversed phase chromatographic retention, a mobile phase system compatible with mass spectroscopy (MS) detection, baseline separation of the critical isomers Citric/isocitric acid, inherently high endogenous TCA levels within biological matrices, overall analyte stability, peak shape, and TCA's pH sensitivity.

In this technical note, the goal was to develop an LC-MS/MS assay able to analyze tricarboxylic acids out of a human serum albumin matrix over a dynamic range of concentrations and demonstrate acceptable accuracy and precision in reference to GLP guidance. In addition, the reference method should be a fast and reproducible assay, easily implemented in most laboratories with standard analytical equipment.

### **Experiment**

Analytical reference standards for Citric, Isocitric, Malic, Succinic, Lactic, and Glutamic acid, deuterated internal Citric acid standard, Dulbecco's phosphate buffered saline and human serum albumin powder (HSA, fatty acid free) were obtained through Sigma-Aldrich®. The Synergi Fusion-RP, a fully porous polar embedded C18 with trimethylsilyl (TMS) end-capping was selected after an extensive column screening was performed to determine the most most

applicable selectivity. An Agilent® 1260 Infinity HPLC system was used for this investigation and a SCIEX® Triple Quad™4500 MS/MS was used for detection. The Triple Quad 4500 was equipped with an ESI source capable of in-analysis polarity switching and eQ™ electronics which can polarity switching in 50 ms and has scan speeds of 20,000 Da/s. This allowed for simultaneous detection of TCA using both negative and positive ionization mode in one run.

Sample preparation of the human serum albumin (HSA, fatty acid free) that was used for all standards and QC's preparation, consisted of taking 420 mg of HSA and dissolving it in 12 mL of Dulbecco's phosphate buffered saline solution (35 mg/mL), mixing, and then stored between 2 – 8 °C. An internal standard solution of Citric acid-D4 was prepared in 0.1 % Formic acid at a concentration of 5  $\mu$ g/mL.

Preparation of standards consisted of two sets of standards at an eight-point concentration range of 20, 45, 150, 300, 500, 800, 1000, and 2000 ng/mL. Six sets of Quality Control (QC) samples were prepared at four concentrations of 60, 200, 800, and 1500 ng/mL, and extracted.

Acidified protein precipitation was used for sample extraction. First, 10  $\mu L$  of spiked human serum albumin was added to a 1.8 mL microcentrifuge tube, then 10  $\mu L$  of working internal standard (Citric acid-D4 at 5  $\mu g/mL)$  was added and mixed with 100  $\mu L$  5 % Trichloroacetic acid) for approximately 1 minute. The mixture was then centrifuged at 18000 rpm for 10 minutes. 100  $\mu L$  of the supernatant was transferred to a Verex autosampler vial and positioned into the autosampler.

The mobile phase consisted of a premixed ratio of Water/Methanol (95:5) with 0.2 % Formic acid added to the aqueous portion. The column heating oven was set to 45 °C, injection volume at 10  $\mu\text{L},$  and a flow rate of 0.85 mL/min was used for this example.

Mass Spectrometer ESI source parameters are referenced in **Table 1** and **Table 2** and additionally contain the mass transitions used for this analysis.

**Table 1.** ESI ionization source parameters.

| Source/Gas Parameters                | NEGATIVE ION | POSITIVE* ION |
|--------------------------------------|--------------|---------------|
| Curtain Gas (CUR):                   | 20           | 20            |
| Collision Gas (CAD):                 | 6            | 6             |
| Temperature (TEM):                   | 700          | 700           |
| Ion Source Gas 1 (GS1):              | 50           | 50            |
| Ion Source Gas 2 (GS2):              | 50           | 50            |
| IonSpray Voltage (IS):               | -4000        | 4000          |
| Entrance Potential (EP):             | -10          | 10            |
| Collision Cell Exit Potential (CXP): | -10          | 10            |

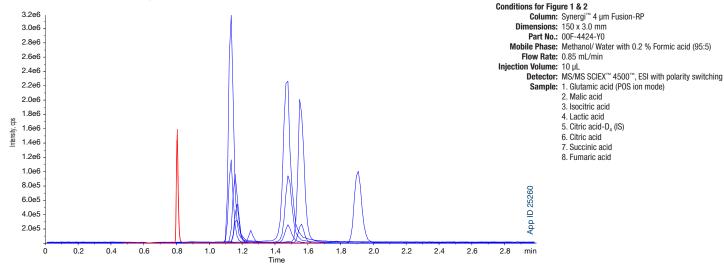
\*Glutamic acid was analyzed in positive ionization mode, all others were under negative ionization mode

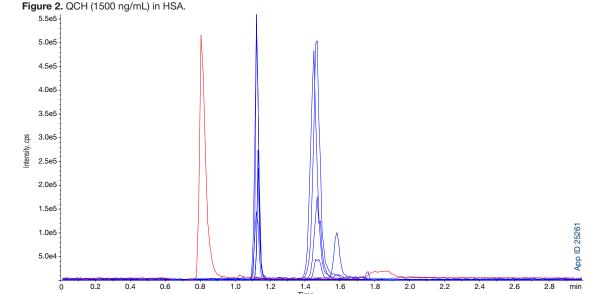


## APPLICATIONS

Table 2.

TCA mass transitions.


| ID                              | Q1 Mass (Da) | Q3 Mass (Da) | Dwell (msec) | DP  | CE  |
|---------------------------------|--------------|--------------|--------------|-----|-----|
| Citric acid 1                   | 191          | 87           | 25           | -35 | -22 |
| Citric acid 2                   | 191          | 111          | 25           | -35 | -12 |
| Isocitric acid 1                | 191          | 155          | 25           | -35 | -18 |
| Isocitric acid 2                | 191          | 129          | 25           | -30 | -18 |
| Malic acid 1                    | 133          | 115          | 25           | -35 | -14 |
| Malic acid 2                    | 133          | 71           | 25           | -35 | -19 |
| Succinic acid 1                 | 117          | 99           | 50           | -30 | -14 |
| Succinic acid 2                 | 117          | 73           | 50           | -30 | -15 |
| Fumaric acid 1                  | 115          | 71           | 50           | -25 | -10 |
| Fumaric acid 2                  | 115          | 98           | 50           | -25 | -10 |
| Lactic acid 1                   | 89           | 43           | 50           | -34 | -20 |
| Lactic acid 2                   | 89           | 41           | 50           | -34 | -20 |
| IS- Citric acid-D4              | 195          | 114          | 50           | -35 | -12 |
| Glutamic acid 1+                | 148          | 102          | 50           | 40  | 15  |
| Glutamic acid 2+ + positive ion | 148          | 84           | 50           | 40  | 20  |


### Results

Page 2 of 7

Figure 1 displays a neat standard solution of seven TCAs and internal standard at a concentration of 500 ng/mL and with an overlay that shows all analytes in both negative and positive mode. Figure 2 is a representative chromatogram of the Quality Control High (QCH) standard at 1500 ng/mL in human serum albumin without Fumaric acid due to the compound stability issue in the matrix of HSA.









Figures 3 & 4 are representative chromatograms of blank human serum albumin Figure 3 versus the lower limit of quantitation in a matrix at 45 ng/mL concentration Figure 4.

Figure 3. Representative chromatogram of blank HSA.

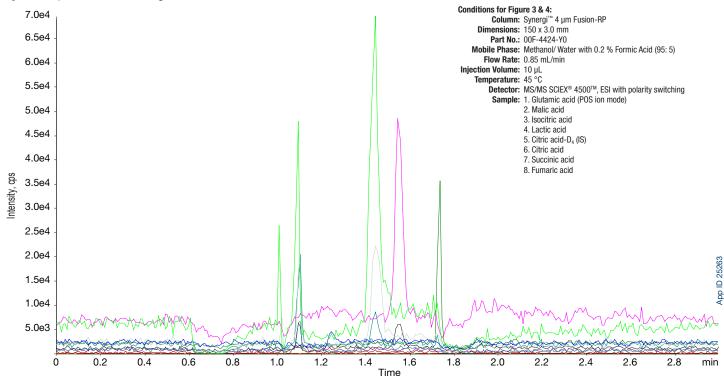
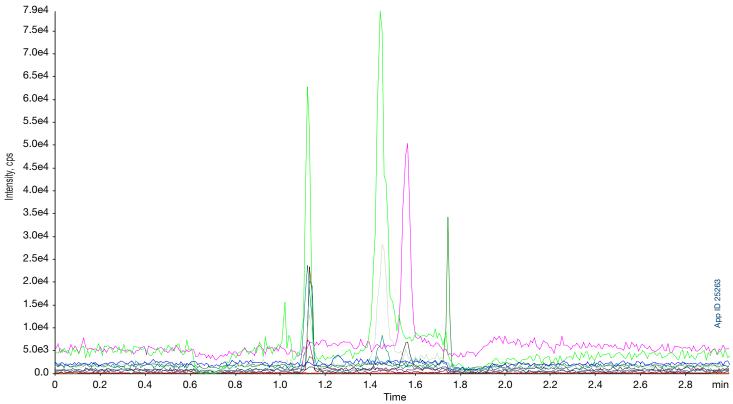
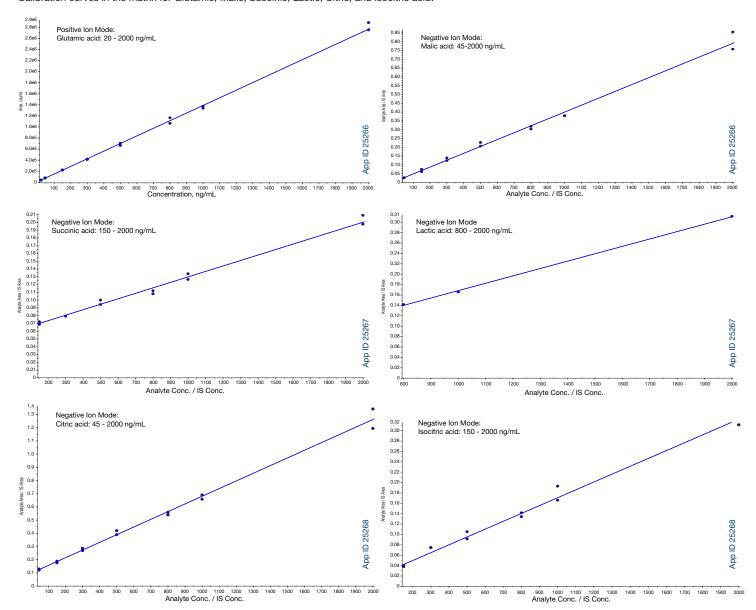




Figure 4. TCA's LLOQ (45 ng/mL) in HSA.






**Table 3.** Summary of accuracy and precision.

| Comple ID                                | лі.<br>ОС1        | QC2          | 003                                            | QC4                                                   |
|------------------------------------------|-------------------|--------------|------------------------------------------------|-------------------------------------------------------|
| Sample ID Norminal Concentration (ng/mL) | QC1<br>60 (ng/mL) | 200 (ng/mL)  | QC3<br>800 (ng/mL)                             | 1500 (ng/mL)                                          |
| Positive ion                             | Glutamic acid     | 200 (Hg/HIL) | 000 (Hg/HIL)                                   | 1300 (11g/111L)                                       |
| 1                                        | 60.3              | 191          | 750                                            | 1550                                                  |
| 2                                        | 53.5              | 184          | 765                                            | 1430                                                  |
| 3                                        | 58.2              | 181          | 770                                            | 1500                                                  |
| 4                                        | *139              | 186          | 779                                            | 1560                                                  |
| 5                                        | 51.4              | 187          | 783                                            | 1500                                                  |
|                                          |                   |              | 783                                            |                                                       |
| 6                                        | 57.8              | 187          | 787                                            | 1520                                                  |
| Mean                                     | 56.2              | 186          | 772                                            | 1510                                                  |
| S.D.                                     | 3.66              | 3.35         | 13.6                                           | 46.5                                                  |
| % CV                                     | 6.51              | 1.8          | 1.77                                           | 3.08                                                  |
| % Theoretical                            | 93.7              | 93           | 96.5                                           | 101                                                   |
| Negative ion                             | Citric acid       |              |                                                |                                                       |
| 1                                        |                   | *424         | 750                                            | 1370                                                  |
| 2                                        |                   | 211          | *1060                                          | 1510                                                  |
| 3                                        |                   | 193          | 772                                            | 1540                                                  |
| 4                                        |                   | 213          | 752                                            | 1610                                                  |
| 5                                        |                   | 189          | 747                                            | 1390                                                  |
| 6                                        |                   | 201          | 943                                            | 1540                                                  |
| Mean                                     |                   | 201          | 793                                            | 1493                                                  |
| S.D.                                     |                   | 10.6         | 84.5                                           | 94                                                    |
| % CV                                     |                   | 5.27         | 10.7                                           | 6.29                                                  |
| % Theoretical                            |                   | 101          | 99.1                                           | 100                                                   |
| Negative ion                             | Malic acid        |              |                                                |                                                       |
| 1                                        |                   | 217          | 693                                            | 1410                                                  |
| 2                                        |                   | 208          | 812                                            | 1380                                                  |
| 3                                        |                   | 184          | 733                                            | 1480                                                  |
| 4                                        |                   | 207          | 702                                            | 1560                                                  |
| 5                                        |                   | 206          | 807                                            | 1480                                                  |
| 6                                        |                   | 174          | 972                                            | 1540                                                  |
| Mean                                     |                   | 199          | 787                                            | 1475                                                  |
| S.D.                                     |                   | 16.5         | 104                                            | 70.4                                                  |
| % CV                                     |                   | 10.5         | 13.2                                           | 4.77                                                  |
|                                          |                   | 8.3          |                                                |                                                       |
| % Theoretical                            |                   | 100          | 98.3                                           | 98.3                                                  |
| Negative ion                             | Succinic acid     |              | =10                                            | 1500                                                  |
| 1                                        |                   |              | 718                                            | 1590                                                  |
| 2                                        |                   |              | 916                                            | 1390                                                  |
| 3                                        |                   |              | 898                                            | 1500                                                  |
| 4                                        |                   |              | 760                                            | 1490                                                  |
| 5                                        |                   |              | 910                                            | 1500                                                  |
| 6                                        |                   |              | 743                                            | 1470                                                  |
| Mean                                     |                   |              | 824                                            | 1490                                                  |
| S.D.                                     |                   |              | 93                                             | 64.2                                                  |
| % CV                                     |                   |              | 11.3                                           | 4.31                                                  |
| % Theoretical                            |                   |              | 103                                            | 99.2                                                  |
| Negative ion                             | Lactic acid       |              |                                                |                                                       |
| 1                                        |                   |              | 768                                            | 1420                                                  |
| 2                                        |                   |              | 1040                                           | 1400                                                  |
| 3                                        |                   |              | 898                                            | 1350                                                  |
| 4                                        |                   |              | 779                                            | 1610                                                  |
| 5                                        |                   |              | 791                                            | 1440                                                  |
| 6                                        |                   |              | 707                                            | 1680                                                  |
| Mean                                     |                   |              | 821                                            | 1483                                                  |
| S.D.                                     |                   |              | 119.8                                          | 130.6                                                 |
| % CV                                     |                   |              | 14.4                                           | 8.81                                                  |
|                                          |                   |              | 104                                            | 98.9                                                  |
| V/o I DAOYATICAL                         |                   |              | 104                                            | 50.9                                                  |
| % Theoretical                            |                   |              |                                                |                                                       |
| Negative ion                             | Isocitric acid    |              | 000                                            | 1000                                                  |
| Negative ion 1                           | Isocitric acid    |              | 908                                            | 1280                                                  |
| Negative ion<br>1<br>2                   | Isocitric acid    |              | 914                                            | 1410                                                  |
| Negative ion 1 2 3                       | Isocitric acid    |              | 914<br>910                                     | 1410<br>1510                                          |
| Negative ion 1 2 3 4                     | Isocitric acid    |              | 914<br>910<br>826                              | 1410<br>1510<br>1440                                  |
| Negative ion 1 2 3 4 5                   | Isocitric acid    |              | 914<br>910<br>826<br>783                       | 1410<br>1510<br>1440<br>1480                          |
| Negative ion 1 2 3 4 5 6                 | Isocitric acid    |              | 914<br>910<br>826                              | 1410<br>1510<br>1440                                  |
| Negative ion 1 2 3 4 5 6 Mean            | Isocitric acid    |              | 914<br>910<br>826<br>783                       | 1410<br>1510<br>1440<br>1480<br>1590<br>1452          |
| Negative ion 1 2 3 4 5 6                 | Isocitric acid    |              | 914<br>910<br>826<br>783<br>850                | 1410<br>1510<br>1440<br>1480<br>1590                  |
| Negative ion 1 2 3 4 5 6 Mean S.D.       | Isocitric acid    |              | 914<br>910<br>826<br>783<br>850<br>865         | 1410<br>1510<br>1440<br>1480<br>1590<br>1452          |
| Negative ion 1 2 3 4 5 6 Mean            | Isocitric acid    |              | 914<br>910<br>826<br>783<br>850<br>865<br>54.3 | 1410<br>1510<br>1440<br>1480<br>1590<br>1452<br>104.6 |



Figure 5.
Calibration curves in the matrix for Glutamic, Malic, Succinic, Lactic, Citric, and Isocitric acid.



**Table 4.** TCA's dynamic curve ranges LLOQ to ULOQ.

| Sample ID      | LLOQ (ng/mL) | ULOQ (ng/mL) |
|----------------|--------------|--------------|
| Glutamic acid  | 20           | 2000         |
| Citric acid    | 45           | 2000         |
| Isocitric acid | 150          | 2000         |
| Malic acid     | 45           | 2000         |
| Succinic acid  | 150          | 2000         |
| Lactic acid    | 800          | 2000         |



### **Discussion**

In this technical note, we addressed numerous analytical challenges associated with the analysis of TCAs within a biological matrix. Multiple reversed phase HPLC columns were screened to determine the most applicable stationary phase to improve selectivity/ retention of the TCAs and provide critical separation of the isomers citric and isocitric acid. **Figure 1** is a representative chromatogram of TCA standards with the Synergi™ 4 µm Fusion-RP 150 x 3.0 mm HPLC column showing chromatographic separation of these critical isomers. The Synergi Fusion-RP displays polar retention and selectivity due to the polar embedded groups incorporated in the stationary phase.

As for detection, both positive and negative ionization modes were used to allow a single injection assay with a total run time of 3-minutes for all compounds as seen in **Figure 1**.

Figure 2 represents extracted human serum albumin Quality Control High (QCH) standard at 1500 ng/mL concentration. It demonstrated that Fumaric acid is not stable in this biological matrix with the current extraction process but exhibits acceptable reversed phase chromatography in neat solution, as seen in Figure 1. For the purpose of this example, we did not include Fumaric acid in the final accuracy and precision evaluation depicted in Table 3, Table 4, or Figure 5.

**Figures 3** and **4** are a comparison of blank human serum albumin vs a 45 ng/mL spiked human serum albumin sample, which represented the lower limit of quantification in this matrix under negative ion mode. It was observed that biological based matrices exhibited an inherently high endogenous level of TCAs, which contributed additional constraints to the linear range of this method. The human serum albumin selected for this method was fatty acid free.

By selecting an appropriate stationary phase, we were able to use an MS compatible mobile phase that did not require any derivatization or ion-pairing agents. The mobile phase was premixed prior to use due to the sensitivity of the method to the aqueous solvent ratio and ensure the solution's consistent pH. The addition of Formic acid also aided in analyte stability and chromatographic peak shape.

The reference assay demonstrated acceptable accuracy and precision under GLP guidance, evidenced in **Table 3**. In addition, the assay demonstrated a dynamic calibration curve range (**Table 4** and **Figure 5**) and verified reproducibility in 2-4 levels of Quality Control standards (**Table 3**).

### **Conclusions**

In this technical note, we investigated a reference method for the simultaneous analysis of six tricarboxylic acids out of a human serum albumin biological matrix, utilizing LC-MS/MS under reversed phase conditions. The method used Electron Spray Ionization (ESI) source with polarity switching, an appropriate stationary phase selectivity, and a mobile phase system that did not require any derivatization or the addition of an ion-pairing agent. This resulted in a fast and reproducible assay with a 3-minute analysis time. In addition, three different batches of Synergi Fusion-RP were tested to confirm method reproducibility. Assay ruggedness was demonstrated by more than 500 injections with no chromatographic change. The assay was able to analyze all six tricarboxylic acids over a dynamic range of concentrations and demonstrated acceptable accuracy and precision under GLP guidance. However, Fumaric acid was not included in the final accuracy and precision evaluation due to stability issues in the matrix. As for the Citric, Isocitric, Malic, Succinic, Lactic, and Glutamic acid, this reference method was shown to be a fast and reproducible assay that can be easily adopted and implemented in most laboratories.

### References

- T. M. Devlin., The tricarboxylic acid cycle. Textbook of Biochemistry with Clinical Correlations., 1997, 4th, 231-266.
- J. E. McDunn, Z. Li, K. P. Adam et al., Metabolomic signatures of aggressive prostate cancer., The Prostate., 2013, 73(14), 1547-1560.
- 3. L.C. Costello, R. B. Franklin, and P. Narayan., Citrate in the diagnosis of prostate cancer., The Prostate., 1999, 38(3), 237-245
- E. B. Cornel, G. A. H. J. Smits, J. E. De Ruijter et al., In vitro proton magnetic resonance spectroscopy of four human prostate cancer cell lines., The Prostate., 1995, 26(5), 275-280.
- K. Stenman, P. Stattin, H. Stenlund, K. Riklund, G. Grobner, and A. Bergh., 1H HRMAS NMR derived bio-markers related to tumor grade, tumor cell fraction, and cell proliferation in prostate tissue samples., Biomarker Insights., 2011, 6, 39-47.
- M. Petrarulo, P. Facchini, E. Cerelli, M. Marangella, and F. Linari., Citrate in urine determined with a new citrate lyase method., Clinical Chemistry., 1995, 41(10), 1518-1521.
- D. S. Wishart, Quantitative metabolomic using NMR., TrAC Trends in Analytical Chemistry., 2008, 27(3), 228-237.



# ICATION

### **Ordering Information**

### Synergi™ Fusion-RP HPLC Columns

| 2.5 µm High Speed Technology (HST) Columns (mm) |             |             |             |             |             |             |  |
|-------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| Phase                                           | 30 x 2.0    | 50 x 2.0    | 100 x 2.0   | 50 x 3.0    | 100 x 3.0   | 50 x 4.6    |  |
| Fusion-RP                                       | 00A-4423-B0 | 00B-4423-B0 | 00D-4423-B0 | 00B-4423-Y0 | 00D-4423-Y0 | 00B-4423-E0 |  |

| 4 µm Microbore and Minibore Columns (mm) SecurityGuard™ Cartrid |             |             |             |             |             |             | d™ Cartridges (mm) |                    |
|-----------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|--------------------|
| Phase                                                           | 50 x 1.0    | 150 x 1.0   | 30 x 2.0    | 50 x 2.0    | 75 x 2.0    | 150 x 2.0   | 250 x 2.0          | 4 x 2.0*           |
| Fusion-RP                                                       | 00B-4424-A0 | 00F-4424-A0 | 00A-4424-B0 | 00B-4424-B0 | 00C-4424-B0 | 00F-4424-B0 | 00G-4424-B0        | AJ0-7556           |
|                                                                 |             |             |             |             |             |             |                    | for ID: 2.0-3.0 mm |

for ID: 2.0-3.0 mm

SecurityGuard Cartridges (mm) 4 µm MidBore™ Columns (mm) 4 x 2.0\* 150 x 3.0 250 x 3.0 Fusion-RP 00B-4424-Y0 00F-4424-Y0 00G-4424-Y0 AJ0-7556

| 4 µm Analytical Columns (mm) SecurityGuard Cartridges (mm |             |             |             |             |                    |  |
|-----------------------------------------------------------|-------------|-------------|-------------|-------------|--------------------|--|
| Phase                                                     | 50 x 4.6    | 75 x 4.6    | 150 x 4.6   | 250 x 4.6   | 4 x 3.0*           |  |
| Fusion-RP                                                 | 00B-4424-E0 | 00C-4424-E0 | 00F-4424-E0 | 00G-4424-E0 | AJ0-7557           |  |
|                                                           |             |             |             |             | for ID: 3.2-8.0 mm |  |

<sup>\*</sup> SecurityGuard Analytical cartridges require holder, Part No.: KJ0-4282

### **Australia**

t: +61 (0)2-9428-6444 auinfo@phenomenex.com

### Austria

t: +43 (0)1-319-1301 anfrage@phenomenex.com

**Belgium** t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch) beinfo@phenomenex.com

### Canada

t: +1 (800) 543-3681 info@phenomenex.com

### China

t: +86 400-606-8099 cninfo@phenomenex.com

### Denmark

t: +45 4824 8048 nordicinfo@phenomenex.com

### Finland

t: +358 (0)9 4789 0063 nordicinfo@phenomenex.com

France t: +33 (0)1 30 09 21 10 franceinfo@phenomenex.com

### Germany

t: +49 (0)6021-58830-0 anfrage@phenomenex.com

### India

t: +91 (0)40-3012 2400 indiainfo@phenomenex.com

### Ireland

t: +353 (0)1 247 5405 eireinfo@phenomenex.com

**Italy** t: +39 051 6327511 italiainfo@phenomenex.com

**Luxembourg** t: +31 (0)30-2418700 nlinfo@phenomenex.com

tecnicomx@phenomenex.com

### The Netherlands

nlinfo@phenomenex.com

### **New Zealand**

nzinfo@phenomenex.com

**Norway** t: +47 810 02 005

**Portugal** t: +351 221 450 488 ptinfo@phenomenex.com

t: +65 800-852-3944

t: +34 91-413-8613

### Sweden

t: +46 (0)8 611 6950

swissinfo@phenomenex.com

twinfo@phenomenex.com

### **United Kingdom**

t: +44 (0)1625-501367 ukinfo@phenomenex.com

t: +1 (310) 212-0555

info@phenomenex.com



**Mexico** t: 01-800-844-5226

t: +31 (0)30-2418700

t: +64 (0)9-4780951

nordicinfo@phenomenex.com

sginfo@phenomenex.com

espinfo@phenomenex.com

nordicinfo@phenomenex.com

**Switzerland** t: +41 (0)61 692 20 20

**Taiwan** t: +886 (0) 0801-49-1246

info@phenomenex.com





Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right.

www.phenomenex.com/behappy



### www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department at international@phenomenex.com

Terms and Conditions Subject to Phenomenex Standard Terms & Conditions, which may be viewed at www.phenomenex.com/TermsAndConditions

### Trademarks

Verex, Synergi, SecurityGuard, BE-HAPPY, and MidBore are trademarks of Phenomenex. Triple Quadiii and eQiii are trademarks of AB SCIEX Ltd. SCIEX is a registered trademark, and AB SCIEX ii is being used under license. Sigma-Aldrich is a registered trademark of Sigma-Aldrich, Inc. Agilent is a registered trademark of Agilent Technologies, Inc.

### Disclaimer

Comparative separations may not be representative of all applications. Phenomenex is not affiliated with Sigma-Aldrich, Inc., LLC or Agilent Technologies, Inc.

SecurityGuard is patented by Phenomenex. U.S. Patent No. 6,162,362 CAUTION: this patent only applies to the analytical-sized guard cartridge holder, and does not apply to SemiPrep, PREP or ULTRA holders, or to any cartridges.

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures.

© 2019 Phenomenex, Inc. All rights reserved.

TN66340219