For security purposes
FOR SECURITY PURPOSES - because Internet Explorer is no longer supported by Microsoft, we suggest that you interact with our secure site through one of our supported browsers - Google Chrome, Firefox, or MS Edge. If you continue to use this website with Internet Explorer you do so at your own risk and you may encounter problems.
Product Information
Phenogel GPC Columns
Phenogel non-aqueous gel permeation chromatography (GPC) columns provide efficient separation for polymers and can be used for USP L21 methods.

Phenogel GPC Columns

Enhance Resolution for Polymer Analysis using Non-Aqueous GPC/SEC

Phenogel size exclusion columns for gel permeation chromatography (GPC) are composed of highly cross-linked styrene-divinylbenzene (SDVB) and achieve high resolution and tight linear calibration curves. Phenogel is available in seven different pore sizes, ranging from 50 Å to 106 Å; and a linear bed configuration. Pore size distribution and pore volume are closely controlled parameters in the manufacturing process accounting for the high resolution, tight linear calibration curves, and excellent column-to-column reproducibility. USP L21 packings available.

  • 5 and 10 µm particle sizes
  • Narrow bore (4.6 mm ID) solvent-saver columns available
  • Highly cross-linked for mechanical and chemical stability
  • Temperature stable to 140 °C.

Phenogel GPC/SEC Columns
HPLC Column

Use Phenogel GPC Columns for Separations of Low, Moderate, and High Molecular Weight:

  • Organic-soluble polymers
  • Plastics and plasticizers
  • Rubbers, resins, and elastomers
  • Pharmaceutical excipients
  • Food and cosmetic excipients
  • Textiles/dyes
  • Petroleum and fuels
  • Oils, lipids, and fatty acids
  • Sample cleanup by GPC

Phenogel Non-Aqueous GPC/SEC Columns

Phenogel packing materials are made from styrene-divinylbenzene by emulsion polymerization under conditions to optimize pore size, total pore volume, particle size, and degree of cross-linking. The results yield Gel Permeation Chromatography (GPC) materials that provide very high resolution, rugged durability, and wide solvent compatibility.

SEM Photos of Phenogel Polymer Beads

Solvent and Temperature Compatibility

Solvent Selection Table

Recommended GPC Solvent Sample Suggested Temp.
  Epoxy Resins
  Phenolic Resins Ambient
  Polymethyl Methacrylates
  Polyethylene Glycol
Polyamides (Nylon)
30 °C
  Diethylhexyl Phthalate Ambient
  Silicone Oils
Polyethylene Oxide
50 °C
  Polyvinylpyrrolidone (PVP) 40 °C
  Cellulose Acetate
  Hydroxyethylcellulose (HEC)
  Chlorinated Rubber

*HFIP (hexafluoroisopropanol) allows polymers such as polyamides and PET that are analyzed at a temperature of 135 °C and higher to be analyzed at temperatures below 100 °C. The narrow particle distribution of Phenogel columns eliminates the problem of overlapping peaks and band broadening that is typically associated with using this solvent with traditional GPC columns.

Although styrene-divinylbenzene materials are exceptionally inert, interaction between the column packing and sample materials (especially very polar solutes) occasionally occurs and the mobile phase must be modified to eliminate this effect. Phenogel columns can tolerate up to 0.1 % low MW amines, 0.5 % glacial acetic acid, or up to 1 % water in the mobile phase as modifiers.

Phenogel columns are temperature stable to 140 °C which is important for applications involving solutes with limited solubility at ambient temperatures, or where solubility considerations demand the use of viscous solvents such as DMF or DMSO. At higher temperatures, eluent viscosity is decreased and mass transfer is enhanced, with the effect of increasing sample resolution. This temperature stability is particularly useful when analyzing polymers such as polyethylene and polypropylene which require higher temperatures.

Solvent Compatibility Table

  Phenogel Pore Size:    
Mobile Phase Solvent 50 Å 100 Å 500 Å 103 Å 104 Å 105 Å 106 Å Linear
& Mixed
Operating Temp.
Acetone Y Y Y Y Y Y Y Y
Benzene Y Y Y Y Y Y Y Y
Carbon Tetrachloride Y Y Y Y Y Y Y Y
Chloroform Y Y Y Y Y Y Y Y
30 % HFIP/Chloroform Y Y Y Y Y Y Y Y
Diethyl Ether Y Y Y Y Y Y Y Y
Dimethylacetamide (DMAC) Y* Y Y Y Y Y Y Y 60 °C
Dimethylformamide (DMF) Y* Y Y Y Y Y Y Y 60 °C
Dioxane Y Y Y Y Y Y Y Y
DMSO Y* Y Y Y Y Y Y Y 60 °C
Ethyl Acetate Y Y Y Y Y Y Y Y
Hexafluoroisopropanol (HFIP) Y Y Y Y Y Y Y Y
Hexane Y Y Y Y Y Y Y Y
M-Cresol Y* Y Y Y Y Y Y Y 100 °C
Methyl Ethyl Ketone Y Y Y Y Y Y Y Y
Methylene Chloride Y Y Y Y Y Y Y Y
0-Chlorophenol Y* Y Y Y Y Y Y Y 100 °C
0-Dichlorobenzene Y* Y Y Y Y Y Y Y 135 °C
Quinolin Y* Y Y Y Y Y Y Y 60 °C
Tetrahydrofuran Y Y Y Y Y Y Y Y
Toluene Y Y Y Y Y Y Y Y
Trichlorobenzene Y* Y Y Y Y Y Y Y 135 °C
Water N N N N N N N N
Xylene Y Y Y Y Y Y Y Y

*Not recommended on 5 µm 50 Å columns.
N = Not Compatible
Y = Compatible

Solvent Switching Considerations

Although Phenogel columns are rugged and can withstand strong solvent changes, care should be exercised when switching from high swell solvents (A) to low swell solvents (B, C, and D), see diagram below. Improper solvent switches can result in a void. Best results are attained when an intermediate swell solvent is used, and column lifetime is improved. Contact Phenomenex regarding solvents not listed below. Column life can be maximized by dedicating certain columns to certain solvents. This will also minimize solvent switches. If care is not taken, a void may occur.

Column life can be maximized by dedicating certain columns to certain solvents. This will also minimize solvent switches. If care is not taken, a void may occur.

Solvent Miscibility Table

Introducing the GPC Solvent Savings Calculator

Quickly calculate the solvent savings and cost savings you can achieve with your GPC polymer analysis.

Solvent Savings Icon